Numerical analysis of gas production from large-scale methane hydrate sediments with fractures

Yongchang Feng, Lin Chen, Yuki Kanda, Anna Suzuki, Atsuki Komiya, Shigenao Maruyama

研究成果: Article査読


Creating artificial fractures in methane hydrate (MH) reservoirs to improve the reservoir permeability is considered a promising method for realizing high gas production efficiency and recovery rate in MH exploitation. A deep understanding of hydrate dissociation and gas production performance in fractured MH sediments is necessary for practical application of this method. Therefore, a large-scale MH sediment model with a single fracture was developed in this study, and the hydrate dissociation and gas production characteristics and the effect of fracture on depressurization and hot water injection processes were investigated. The numerical results indicate that the fracture in the sediment can significantly improve hydrate dissociation and gas production in the early depressurization stage, and the average gas production rate during the economical production stage increases by 30% in comparison with that without fracture, but it has less effect on the final gas production. Moreover, high fracture permeability would lead to shorter duration of the economical production stage and higher production efficiency. In addition, the fracture is beneficial for hot water to flow deep into the MH sediment, and the production efficiency and final production in the economical production stage increase after injecting hot water along the fracture.

出版ステータスPublished - 2021 12 1

ASJC Scopus subject areas

  • 土木構造工学
  • 建築および建設
  • モデリングとシミュレーション
  • 再生可能エネルギー、持続可能性、環境
  • 燃料技術
  • エネルギー工学および電力技術
  • 汚染
  • エネルギー(全般)
  • 機械工学
  • 産業および生産工学
  • 管理、モニタリング、政策と法律
  • 電子工学および電気工学


「Numerical analysis of gas production from large-scale methane hydrate sediments with fractures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。