Numerical analysis for small punch creep tests by finite-element method

Peng Cheng Zhai, Toshiyuki Hashida, Shin Ichi Komazaki, Qing Jie Zhang

研究成果: Article査読

2 被引用数 (Scopus)


A numerical study is presented that simulates small punch creep (SP-C) tests using a finite-element method (FEM). The objective of the present study is to develop a miniaturized testing methodology for high-temperature creep properties. The numerical simulations have been shown to produce deflection versus time curves that are quantitatively similar to the experimental results obtained on tungsten-alloyed 9 % Cr ferritic steels. It is also demonstrated that the numerically predicted curves show the steady state (secondary) creep stage. Furthermore, the numerical simulations reveal that the magnitude of the equivalent stress in the central region of the SP-C specimen shows no significant change with respect to time at the secondary creep stage, supporting the use of the present SP-C testing method to characterize the secondary creep deformation rate. Finally, an approximate equation is proposed for the assessment of the equivalent stress in the SP-C specimen in terms of the load and testing parameters.

ジャーナルJournal of Testing and Evaluation
出版ステータスPublished - 2005 7 1

ASJC Scopus subject areas

  • 材料科学(全般)
  • 材料力学
  • 機械工学


「Numerical analysis for small punch creep tests by finite-element method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。