Nowcasting algorithm for wind fields using ensemble forecasting and aircraft flight data

Ryota Kikuchi, Takashi Misaka, Shigeru Obayashi, Hamaki Inokuchi, Hiroshi Oikawa, Akeo Misumi

研究成果: Article査読

3 被引用数 (Scopus)

抄録

This study proposes an algorithm that combines ensemble numerical weather-prediction model data and aircraft flight data in a wind nowcasting system for safe and efficient aircraft operation. It uses an ensemble-weighted average method based on sequential importance sampling (SIS), which is a particle filter method for forecasting the wind field in real time. SIS is applied to the ensemble forecast data and control run data of the European Centre for Medium-Range Weather Forecasts (ECMWF), Japan Meteorological Agency (JMA), Korea Meteorological Administration (KMA), National Centers for Environmental Prediction (NCEP) and United Kingdom Met Office (UKMO) for the two case studies that use flight data from 72 commercial aircraft flights. The results show that SIS can forecast better than the other four methods: direct ensemble average (DEA), elite strategy (ES), and selective ensemble average (SEAV) and weighted average (SEWE), with average improvements in forecast performance of about 10–15%, even at 300 min ahead. In addition, the overall forecast performance between the forecast wind and observation of the radiosonde of SIS was slightly better than DEA. In both cases, the forecast performance was significantly improved on points along the flight path of the aircraft used for this study. Case analyses and the impact of differences in the hyper-parameters of SIS on forecast performance are also presented in this study.

本文言語English
ページ(範囲)365-375
ページ数11
ジャーナルMeteorological Applications
25
3
DOI
出版ステータスPublished - 2018 7

ASJC Scopus subject areas

  • 大気科学

フィンガープリント

「Nowcasting algorithm for wind fields using ensemble forecasting and aircraft flight data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル