Notes on computing peaks in k-levels and parametric spanning trees

N. Katoh, T. Tokuyama

研究成果: Paper

5 被引用数 (Scopus)

抄録

We give an algorithm to compute all the local peaks in the k-level of an arrangement of n lines in O(n log n) + Õ((kn)2/3) time. We can also find τ largest peaks in O(n log2 n) + Õ((τn)2/3) time. Moreover, we consider the longest edge in a parametric minimum spanning tree (in other words, a bottleneck edge for connectivity), and give an algorithm to compute the parameter value (within a given interval) maximizing/minimizing the length of the longest edge in MST. The time complexity is Õ(n8/7k1/7 + nk1/3).

本文言語English
ページ241-248
ページ数8
出版ステータスPublished - 2001 1 1
イベント17th Annual Symposium on Computational Geometry (SCG'01) - Medford, MA, United States
継続期間: 2001 6 32001 6 5

Other

Other17th Annual Symposium on Computational Geometry (SCG'01)
CountryUnited States
CityMedford, MA
Period01/6/301/6/5

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Computational Mathematics

フィンガープリント 「Notes on computing peaks in k-levels and parametric spanning trees」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル