Nonlinear diffusion equations driven by the p(·)-Laplacian

Goro Akagi, Kei Matsuura

研究成果: Article査読

23 被引用数 (Scopus)

抄録

This paper is concerned with nonlinear diffusion equations driven by the p(·)-Laplacian with variable exponents in space. The well-posedness is first checked for measurable exponents by setting up a subdifferential approach. The main purposes are to investigate the large-time behavior of solutions as well as to reveal the limiting behavior of solutions as p(·) diverges to the infinity in the whole or in a subset of the domain. To this end, the recent developments in the studies of variable exponent Lebesgue and Sobolev spaces are exploited, and moreover, the spatial inhomogeneity of variable exponents p(·) is appropriately controlled to obtain each result.

本文言語English
ページ(範囲)37-64
ページ数28
ジャーナルNonlinear Differential Equations and Applications
20
1
DOI
出版ステータスPublished - 2013 2
外部発表はい

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「Nonlinear diffusion equations driven by the p(·)-Laplacian」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル