No critical nonlinear diffusion in 1d quasilinear fully parabolic chemotaxis system

Tomasz Cieślak, Kentarou Fujie

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This paper deals with the fully parabolic 1d chemotaxis system with diffusion 1/(1 + u). We prove that the above mentioned nonlinearity, despite being a natural candidate, is not critical. It means that for such a diffusion any initial condition, independently on the magnitude of mass, generates the global-in-time solution. In view of our theorem one sees that the one-dimensional Keller-Segel system is essentially different from its higher-dimensional versions. In order to prove our theorem we establish a new Lyapunov-like functional associated to the system. The information we gain from our new functional (together with some estimates based on the well-known classical Lyapunov functional) turns out to be rich enough to establish global existence for the initial-boundary value problem.

本文言語English
ページ(範囲)2529-2540
ページ数12
ジャーナルProceedings of the American Mathematical Society
146
6
DOI
出版ステータスPublished - 2018
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「No critical nonlinear diffusion in 1d quasilinear fully parabolic chemotaxis system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル