Neuromorphic adiabatic quantum computation

Shigeo Sato, Mitsunaga Kinjo

研究成果: Chapter

抄録

The advantage of quantum mechanical dynamics in information processing has attracted much interest, and dedicated studies on quantum computation algorithms indicate that a quantum computer has remarkable computational power in certain tasks. Quantum properties such as quantum superposition and quantum tunneling are worth studying because they may overcome the weakness of gradient descent method in classical neural networks. Also, the technique established for neural networks can be useful for developing a quantum algorithm. In this chapter, first the authors show the effectiveness of incorporating quantum dynamics and then propose neuromorphic adiabatic quantum computation algorithm based on the adiabatic change of Hamiltonian. The proposed method can be viewed as one of complex-valued neural networks because a qubit operates like a neuron. Next, the performance of the proposed algorithm is studied by applying it to a combinatorial optimization problem. Finally, they discuss the learning ability and hardware implementation.

本文言語English
ホスト出版物のタイトルComplex-Valued Neural Networks
ホスト出版物のサブタイトルUtilizing High-Dimensional Parameters
出版社IGI Global
ページ352-375
ページ数24
ISBN(印刷版)9781605662145
DOI
出版ステータスPublished - 2009

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)

フィンガープリント

「Neuromorphic adiabatic quantum computation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル