Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices

研究成果: Article査読

41 被引用数 (Scopus)

抄録

The Cauchy problems for Navier-Stokes equations and nonlinear heat equations are studied in modulation spaces Mq, σs (Rn). Though the case of the derivative index s = 0 has been treated in our previous work, the case s ≠ 0 is also treated in this paper. Our aim is to reveal the conditions of s, q and σ of Mq, σs (Rn) for the existence of local and global solutions for initial data u0 ∈ Mq, σs (Rn).

本文言語English
ページ(範囲)1972-2002
ページ数31
ジャーナルJournal of Differential Equations
248
8
DOI
出版ステータスPublished - 2010 4 15

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル