抄録
Organic ferroelectrics have been actively developed with the goal of fabricating environmentally friendly and low-cost memory devices. The remanent polarization of hydrogen-bonded organic ferroelectrics approaches that of the inorganic ones. Nanoscale fabrication of organic ferroelectrics is an essential aspect of high-density memory devices. A pyrene derivative with four tetradecylamide (−CONHC14H29) chains (1) formed an amide-type N−H⋅⋅⋅O hydrogen-bonded one-dimensional (1D) column, which demonstrated ferroelectricity in the discotic hexagonal columnar (Colh) liquid crystalline phase through the inversion of the orientation of the hydrogen-bonded chains. On the contrary, similar chiral pyrene derivatives bearing 3,7-dimethyl-1-octhylamide chains (S-2 and R-2) did not indicate the Colh phase and ferroelectricity. Homogeneous mixed liquid crystals (1)1−x(S-2)x (i.e., between the ferroelectric 1 and the non-ferroelectric S-2) enable the control of the nanoscale aggregation state of the organic ferroelectrics, resulting in a nanoscale effect of the 1D supramolecular ferroelectrics. Ferroelectric mixed liquid crystals (1)1−x(S-2)x were observed at x≦0.03, where one S-2 molecule was inserted after every thirty-three 1 molecule in the mixed liquid crystal (1)33(S-2). An average (1)34 length of approximately 12 nm was required to maintain the 1D ferroelectricity, which was similar to the nanoscale limit of inorganic ferroelectrics, such as hafnium oxide thin film (≈15 nm).
本文言語 | English |
---|---|
ページ(範囲) | 11233-11239 |
ページ数 | 7 |
ジャーナル | Chemistry - A European Journal |
巻 | 25 |
号 | 48 |
DOI | |
出版ステータス | Published - 2019 |
ASJC Scopus subject areas
- 触媒
- 有機化学