Multiphase particle simulation of gas bubble passing through liquid/liquid interfaces

Shungo Natsui, Hifumi Takai, Takehiko Kumagai, Tatsuya Kikuchi, Ryosuke O. Suzuki

研究成果: Article査読

18 被引用数 (Scopus)

抄録

A newly developed computational fluid dynamics (CFD) model based on a multi-phase particle method is presented for predicting the entrainment behavior of liquid metal into slag due to rising single bubble. By comparing results calculated using this model against experimental data, it was found that the transient behavior of bubbles and the two immiscible liquids can be accurately estimated by this method. The rupturing of the thin water film surrounding the bubble was less reliably predicted, but this 3-dimensional unsteady numerical model still nevertheless provides valuable new information for directly predicting the change in the liquid/liquid interface over time. Such prediction of continuous change in an interface has not been possible by more conventional methods, and thus further improvement in the accuracy of this simulated model may well be the only way to non-empirically predict the metal-slag interface area in actual processes.

本文言語English
ページ(範囲)1707-1715
ページ数9
ジャーナルMaterials Transactions
55
11
DOI
出版ステータスPublished - 2014
外部発表はい

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Multiphase particle simulation of gas bubble passing through liquid/liquid interfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル