Multi-poisson approach to the Painlevé equations: From the isospectral deformation to the isomonodromic deformation

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t = [Xλ, Aλ] in the sense of the isospectral deformation, where Xλ, Aλ ∈ g depend rationally on the indeterminate λ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation ∂Xλ/∂t = [Xλ, Aλ] + ∂Aλ/∂λ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four.

本文言語English
論文番号025
ジャーナルSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
13
DOI
出版ステータスPublished - 2017 4 15
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数理物理学
  • 幾何学とトポロジー

フィンガープリント

「Multi-poisson approach to the Painlevé equations: From the isospectral deformation to the isomonodromic deformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル