Monodromy at infinity of A-hypergeometric functions and toric compactifications

研究成果: Article査読

9 被引用数 (Scopus)

抄録

We study non-confluent A-hypergeometric systems introduced by Gelfand et al. (Funct Anal Appl 23:94-106, 1989) and prove a formula for the eigenvalues of their monodromy automorphisms defined by the analytic continuations along large loops contained in complex lines parallel to the coordinate axes. The method of toric compactifications introduced in Libgober and Sperber (Compositio Math 95:287-307, 1995) and Matsui and Takeuchi (Mathematische Zeitschrift) will be used to prove our main theorem.

本文言語English
ページ(範囲)815-831
ページ数17
ジャーナルMathematische Annalen
348
4
DOI
出版ステータスPublished - 2010
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Monodromy at infinity of A-hypergeometric functions and toric compactifications」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル