Monodromies at infinity of non-tame polynomials

Kiyoshi Takeuchi, Mihai Tibǎr

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Polynomials that we usually encounter in mathematics are nonconvenient and hence non-tame at infinity. We consider the monodromy at infinity and the monodromies around the bifurcation points of polynomial functions f : ℂn → ℂ which are non-tame at infinity and might have non-isolated singularities. Our description of their Jordan blocks in terms of the Newton polyhedra and the motivic Milnor fibers relies on two new issues: the non-atypical eigenvalues of the monodromies and the corresponding concentration results for their generalized eigenspaces.

本文言語English
ページ(範囲)477-506
ページ数30
ジャーナルBulletin de la Societe Mathematique de France
144
3
DOI
出版ステータスPublished - 2016
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Monodromies at infinity of non-tame polynomials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル