Model-based study on activeness of neuronal dendrites and its functional significance

Mitsuyuki Nakao, Norihiro Katayama, Mitsuaki Yamamoto

研究成果: Article査読

抄録

Recent neurophysiological experiments showed that neuronal dendrites could be recognized as active systems rather than passive transmission lines due to the existence of varied types of voltage-gated ionic channels. This study is performed to clarify functional significance of such an active propery of neuronal dendrites. In order to achieve this, a compartment neuron modal is constructed so that the model closely mimicks the most recently found responsiveness of neurons with active dendrites. Based on the model, generation and propagation of action potentials and the associated behavior of intracellular Ca2+ concentration are simulated for various combinations of synaptic inputs. Inhibitory synaptic inputs are found to control the propagating dendritic area of the action potentials. Since the propagation of the action potential is accompanied by an increase of intracellular Ca2+ concentration, the inhibitory input could shape synaptic organizations on the dendritic tree through the well-known Ca2+-induced synaptic plastihity. In addition, an action potential generation in the soma is shown to differentiate levels of the interacellular Ca2+ concentration in the whole dendritic area. Finally, we reach the hypothesis that the activeness of the dendritic system could serve to broadcast the information concerning somatic firing to the whole dendritic tree, which is mediated by the associated increase of the intracellular Ca2+ concentration.

本文言語English
ページ(範囲)254-264
ページ数11
ジャーナルJapanese Journal of Medical Electronics and Biological Engineering
35
3
出版ステータスPublished - 1997 1月 1
外部発表はい

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Model-based study on activeness of neuronal dendrites and its functional significance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル