Minimization and parameterized variants of vertex partition problems on graphs

研究成果: Conference contribution

抄録

Let Π1, Π2, . . ., Πc be graph properties for a fixed integer c. Then, (Π1, Π2, . . ., Πc)-Partition is the problem of asking whether the vertex set of a given graph can be partitioned into c subsets V1, V2, . . ., Vc such that the subgraph induced by Vi satisfies the graph property Πi for every i ∈ {1, 2, . . ., c}. Minimization and parameterized variants of (Π1, Π2, . . ., Πc)-Partition have been studied for several specific graph properties, where the size of the vertex subset V1 satisfying Π1 is minimized or taken as a parameter. In this paper, we first show that the minimization variant is hard to approximate for any nontrivial additive hereditary graph properties, unless c = 2 and both Π1 and Π2 are classes of edgeless graphs. We then give FPT algorithms for the parameterized variant when restricted to the case where c = 2, Π1 is a hereditary graph property, and Π2 is the class of acyclic graphs.

本文言語English
ホスト出版物のタイトル31st International Symposium on Algorithms and Computation, ISAAC 2020
編集者Yixin Cao, Siu-Wing Cheng, Minming Li
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ページ401-4013
ページ数3613
ISBN(電子版)9783959771733
DOI
出版ステータスPublished - 2020 12
イベント31st International Symposium on Algorithms and Computation, ISAAC 2020 - Virtual, Hong Kong, China
継続期間: 2020 12 142020 12 18

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
181
ISSN(印刷版)1868-8969

Conference

Conference31st International Symposium on Algorithms and Computation, ISAAC 2020
国/地域China
CityVirtual, Hong Kong
Period20/12/1420/12/18

ASJC Scopus subject areas

  • ソフトウェア

引用スタイル