Minimax parametric optimization problems and multi-dimensional parametric searching

Takeshi Tokuyama

研究成果: Conference article査読

11 被引用数 (Scopus)

抄録

The parametric minimax problem, which finds the parameter value minimizing the weight of a solution of a combinatorial maximization problem, is a fundamental problem in sensitivity analysis. Moreover, several problems in computational geometry can be formulated as parametric minimax problems. The parametric search paradigm gives an efficient sequential algorithm for a convex parametric minimax problem with one parameter if the original non-parametric problem has an efficient parallel algorithm. We consider the parametric minimax problem with d parameters for a constant d, and solve it by using multidimensional version of the parametric search paradigm. As a new feature, we give a feasible region in the parameter space in which the parameter vector must be located. Typical results obtained as applications are: (1) Efficient solutions for some geometric problems, including theoretically efficient solutions for the minimum diameter bridging problem in d-dimensional space between convex polytopes. (2) Parame tric polymatroid optimization, for example, O(n log n) time algorithm to compute the parameter vector minimizing k-largest linear parametric elements with d dimensions.

本文言語English
ページ(範囲)75-83
ページ数9
ジャーナルConference Proceedings of the Annual ACM Symposium on Theory of Computing
出版ステータスPublished - 2001 1月 1
イベント33rd Annual ACM Symposium on Theory of Computing - Creta, Greece
継続期間: 2001 7月 62001 7月 8

ASJC Scopus subject areas

  • ソフトウェア

フィンガープリント

「Minimax parametric optimization problems and multi-dimensional parametric searching」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル