Microlocal Vanishing Cycles and Ramified Cauchy Problems in the Nilsson Class

研究成果: Article査読

抄録

We will clarify the microlocal structure of the vanishing cycle of the solution complexes to D-modules. In particular, we find that the object introduced by D'Agnolo and Schapira is a kind of the direct product (with a monodromy structure) of the sheaf of holomorphic microfunctions. By this result, a totally new proof (that does not involve the use of the theory of microlocal inverse image) of the theorem of D'Agnolo and Schapira will be given. We also give an application to the ramified Cauchy problems with growth conditions, i.e., the problems in the Nilsson class functions of Deligne.

本文言語English
ページ(範囲)111-127
ページ数17
ジャーナルCompositio Mathematica
125
1
DOI
出版ステータスPublished - 2001
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Microlocal Vanishing Cycles and Ramified Cauchy Problems in the Nilsson Class」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル