Method for sizing of 3-D surface breaking flaws by leakage flux

D. Minkov, T. Shoji

研究成果: Article査読

27 被引用数 (Scopus)

抄録

A method is proposed for sizing of 3-D surface breaking flaws with complex profiles. The method can be used for either magnetic materials or conductive materials when a magnetic field or electric current are distributed homogeneously inside the sample. The distribution of the intensity of the leakage magnetic field or electric field has to be measured at a constant distance above the surface of the sample in a direction perpendicular to the long axis of the flaw. The method is based on a dipole model of the flaw which predicts the intensity of the leakage field and on minimisation of the error between the measured distribution of the intensity of the leakage field and the corresponding theoretical distribution which changes with the size of the flaw. Computations are made for sizing of flaws with different shapes and sizes while it is assumed that the density of the charge at the walls of the flaw can vary. It is shown that the method allows fast distinguishing of the shape of a particular flaw when the sample contains several flaws with different shapes and the sizes of these flaws are known. Fast determination of the size of a particular flaw is achieved when the sample contains flaws with the same shape and different but known sizes. Also, the size of the flaw and the density of the charge at the walls of the flaw could be computed precisely, independently of the initial approximation of the minimisation procedure, when the shape of the flaw is known. The speed of the minimisation process increases with the decrease of the measurement distance from the surface of the flaw. Experimental requirements for precise flaw sizing are discussed.

本文言語English
ページ(範囲)317-324
ページ数8
ジャーナルNDT and E International
31
5
DOI
出版ステータスPublished - 1998 10月

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 機械工学

フィンガープリント

「Method for sizing of 3-D surface breaking flaws by leakage flux」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル