Mechanical Strength Evaluation of the Internal Matrix Reinforced Nb3Sn Multifilamentary Wires Using Cu-Sn-In Ternary Alloy Matrix

Yoshimitsu Hishinuma, Hidetoshi Oguro, Hiroyasu Taniguchi, Satoshi Awaji, Akihiro Kikuchi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We investigated the simple internal reinforcement method using special reinforcement ternary bronze alloy matrix on the bronze processed Nb3Sn wire. The Cu-Sn-Zn ternary alloy matrix was transformed to the (Cu, Zn) solid solution after Nb3Sn synthesis based on the solid solution strengthening mechanism. For the further mechanical strength improvement, we focused on the Indium (In) as the more effective solute element for the 'internal matrix strengthening', and succeeded to fabricate the bronze processed Nb3Sn multifilamentary wire using various Cu-Sn-In-(Ti) ternary alloy matrices. Changes of the Vickers hardness before and after Nb3Sn synthesis and the transport critical current (Ic) under the uniaxial tensile deformation were evaluated. Vickers hardness of the matrix after Nb3Sn synthesis on the Cu-Sn-In ternary alloy matrix samples was higher compared with the conventional bronze and the Cu-Sn-Zn ternary matrix samples. On the other hand, the tensile stress obtained to the maximum peak Ic value on the Cu-Sn-In ternary alloy matrix sample was estimated to approximately 265 MPa, and this value was much higher than those of the Cu-Sn-Zn ternary matrix and conventional bronze processed samples. We found that the In element would become more attractive solute element than Zn element for the internal reinforcement ternary matrix.

本文言語English
論文番号9040521
ジャーナルIEEE Transactions on Applied Superconductivity
30
4
DOI
出版ステータスPublished - 2020 6

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 電子工学および電気工学

フィンガープリント

「Mechanical Strength Evaluation of the Internal Matrix Reinforced Nb<sub>3</sub>Sn Multifilamentary Wires Using Cu-Sn-In Ternary Alloy Matrix」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル