Maximal L1-regularity for parabolic boundary value problems with inhomogeneous data in the half-space

Takayoshi OGAWA, Senjo Shimizu

研究成果: Article査読

抄録

End-point maximal L1-regularity for the parabolic initial-boundary value problem is considered in the half-space. For the inhomogeneous boundary data of both the Dirichlet and the Neumann type, maximal L1-regularity for the initial-boundary value problem of parabolic equation is established in time end-point case upon the Besov space as well as the optimal trace estimates. We derive the almost orthogonal properties between the boundary potentials of the Dirichlet and the Neumann boundary data and the Littlewood-Paley dyadic decomposition of unity.

本文言語English
ページ(範囲)57-62
ページ数6
ジャーナルProceedings of the Japan Academy Series A: Mathematical Sciences
96
7
DOI
出版ステータスPublished - 2020 7

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Maximal L<sup>1</sup>-regularity for parabolic boundary value problems with inhomogeneous data in the half-space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル