Max-min 3-dispersion problems

Takashi Horiyama, Shin Ichi Nakano, Toshiki Saitoh, Koki Suetsugu, Akira Suzuki, Ryuhei Uehara, Takeaki Uno, Kunihiro Wasa

研究成果: Article査読

抄録

Given a set P of n points on which facilities can be placed and an integer k, we want to place k facilities on some points so that the minimum distance between facilities is maximized. The problem is called the k-dispersion problem. In this paper, we consider the 3-dispersion problem when P is a set of points on a plane (2-dimensional space). Note that the 2-dispersion problem corresponds to the diameter problem. We give an O(n) time algorithm to solve the 3-dispersion problem in the L metric, and an O(n) time algorithm to solve the 3-dispersion problem in the L1 metric. Also, we give an O(n2 log n) time algorithm to solve the 3-dispersion problem in the L2 metric.

本文言語English
ページ(範囲)1101-1107
ページ数7
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E104A
9
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Max-min 3-dispersion problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル