Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer

Zhixia Li, Masakazu Kawashita, Norio Araki, Michihide Mitsumori, Masahiro Hiraoka, Masaaki Doi

研究成果: Article査読

123 被引用数 (Scopus)

抄録

Magnetic hyperthermia is a safe method for cancer therapy. A gap-type alternating current magnetic field (100 kHz, 100-300 Oe) is expected to be clinically applicable for magnetic hyperthermia. In this study, magnetite nanoparticles (MNPs) varying in size from 8 to 413 nm were synthesized using a chemical coprecipitation and an oxidation precipitation method to find the optimum particle size that shows a high heating efficiency in an applied magnetic field. The particles' in vitro heating efficiency in an agar phantom at an MNP concentration of 58 mg Fe/ml was measured in an applied magnetic field. In a magnetic field of 120 Oe, the temperature increase (ΔT) of the agar phantom within 30 s was 9.3 °C for MNPs with a size of 8 nm, but was less for the other samples, while in a magnetic field of 300 Oe, ΔT = 55 °C for MNPs with a size of 24 nm, and ΔT = 25 °C for MNPs with a size of 8 nm. The excellent heating efficiency of MNPs with a size of 24 nm in a magnetic field of 300 Oe may be due to a combination of the effects of both relaxation and hysteresis losses of the magnetic particles. It is believed that MNPs with a size of 8-24 nm will be useful for the in situ hyperthermia treatment of cancer.

本文言語English
ページ(範囲)990-996
ページ数7
ジャーナルMaterials Science and Engineering C
30
7
DOI
出版ステータスPublished - 2010 8 30

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル