TY - JOUR
T1 - Magnetic ordering in the rutile molecular magnets MII[N(CN)2]2 (M = Ni, Co, Fe, Mn, Ni0.5Co0.5, and Ni0.5Fe0.5)
AU - Lappas, Alexandros
AU - Wills, Andrew S.
AU - Green, Mark A.
AU - Prassides, Kosmas
AU - Kurmoo, Mohamedally
PY - 2003/4
Y1 - 2003/4
N2 - Rietveld refinement of powder neutron diffraction data, combined with group theory considerations, is used to determine the magnetic structures of the binary metal dicyanamide, MII[N(CN)2]2 where M = Ni, Co, Fe, Mn, Ni0.5Co0.5, and Ni0.5Fe0.5. Compounds with M = Mn or Fe show a canted antiferromagnetic arrangement of spin oriented in the ab crystallographic plane, with antiparallel components of the two sublattices along the a axis and parallel along the b axis. Symmetry considerations forbid an additional moment, whether compensated or not, to be present along the c axis. The compounds with fewer unpaired electrons (Co and Ni) are ferromagnets, with all moments oriented along the c axis. The mixed composition of Ni0.5Co0.5 displays the same collinear ferromagnetic structure as its parent compounds. However, the composition with M = Ni0.5Fe0.5, whose parent compounds show different magnetic behavior, does not exhibit long-range magnetic ordering down to 1.7 K. Magnetostriction was observed for the ferromagnets for which we investigated the variable temperature powder neutron diffraction. The cobalt-rich compounds show more pronounced effects, consistent with their increasing magnetocrystalline anisotropy.
AB - Rietveld refinement of powder neutron diffraction data, combined with group theory considerations, is used to determine the magnetic structures of the binary metal dicyanamide, MII[N(CN)2]2 where M = Ni, Co, Fe, Mn, Ni0.5Co0.5, and Ni0.5Fe0.5. Compounds with M = Mn or Fe show a canted antiferromagnetic arrangement of spin oriented in the ab crystallographic plane, with antiparallel components of the two sublattices along the a axis and parallel along the b axis. Symmetry considerations forbid an additional moment, whether compensated or not, to be present along the c axis. The compounds with fewer unpaired electrons (Co and Ni) are ferromagnets, with all moments oriented along the c axis. The mixed composition of Ni0.5Co0.5 displays the same collinear ferromagnetic structure as its parent compounds. However, the composition with M = Ni0.5Fe0.5, whose parent compounds show different magnetic behavior, does not exhibit long-range magnetic ordering down to 1.7 K. Magnetostriction was observed for the ferromagnets for which we investigated the variable temperature powder neutron diffraction. The cobalt-rich compounds show more pronounced effects, consistent with their increasing magnetocrystalline anisotropy.
UR - http://www.scopus.com/inward/record.url?scp=0037809620&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037809620&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0037809620
VL - 67
SP - 1444061
EP - 1444068
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 0163-1829
IS - 14
M1 - 144406
ER -