Magnetic anisotropy and switching field of spindle-shaped metal particles for particulate recording media

M. Igaki, H. Nagamori, T. Shimatsu, Migaku Takahashi

研究成果: Article

5 引用 (Scopus)

抜粋

The difference of magnetic properties between spindle- and needle-shaped metal particles, which have almost the same thickness of about 17-27 nm, is discussed through a magnetic torque analysis for particulate films made of these metal particles. The effective magnetic anisotropy field of particles Hptck(eff) are 6.3 and 6.5 kOe (averaged values), respectively, for spindle- and needle-shaped metal particles, showing no significant difference. Because of the interparticulate magnetostatic coupling, these Hptck(eff) values are estimated to be about 1 kOe smaller than intrinsic values of shape anisotropy field. Saturation magnetization Ms in both kinds of metal particles is found to show almost the same value of about 1300 emu/cm3. However, the switching field HEAr normalized by Hptck(eff) of the spindle-shaped particles is about 10-15% larger than that of the needle-shaped particles. Furthermore, the value of SFD of the spindle-shaped particles is about 20% smaller than that of the needle-shaped particles. The values of HEAr/Hptck(eff) and rotational hysteresis loss Rh in both kinds of metal particles are strongly related to the thickness of particles, however, significant differences in these relations between spindle- and needle-shaped metal particles were not observed.

元の言語English
ページ(範囲)209-219
ページ数11
ジャーナルJournal of Magnetism and Magnetic Materials
183
発行部数1-2
DOI
出版物ステータスPublished - 1998 3 7

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

フィンガープリント Magnetic anisotropy and switching field of spindle-shaped metal particles for particulate recording media' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用