Lr-Helmholtz-Weyl decomposition for three dimensional exterior domains

Matthias Hieber, Hideo Kozono, Anton Seyfert, Senjo Shimizu, Taku Yanagisawa

研究成果: Article査読

抄録

In this article the Helmholtz-Weyl decomposition in three dimensional exterior domains is established within the Lr-setting for 1<r<∞. In fact, given an Lr-vector field u, there exist h∈Xharr(Ω), w∈H˙1,r(Ω)3 with divw=0 and p∈H˙1,r(Ω) such that u may be decomposed uniquely as u=h+rotw+∇p. If for the given Lr-vector field u, its harmonic part h is chosen from Vharr(Ω), then a decomposition similar to the above one is established, too. However, its uniqueness holds in this case only for the case 1<r<3. The proof given relies on an Lr-variational inequality allowing to construct w∈H˙1,r(Ω)3 and p∈H˙1,r(Ω) for given u∈Lr(Ω)3 as weak solutions to certain elliptic boundary value problems.

本文言語English
論文番号109144
ジャーナルJournal of Functional Analysis
281
8
DOI
出版ステータスPublished - 2021 10 15

ASJC Scopus subject areas

  • 分析

フィンガープリント

「L<sup>r</sup>-Helmholtz-Weyl decomposition for three dimensional exterior domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル