Loopy belief propagation and probabilistic image processing

Kazuyuki Tanaka, Jun Ichi Inoue, D. M. Titterington

研究成果: Conference contribution

8 被引用数 (Scopus)

抄録

Estimation of hyperparameters by maximization of the marginal likelihood in probabilistic image processing is investigated by using the cluster variation method. The algorithms are substantially equivalent to generalized loopy belief propagation.

本文言語English
ホスト出版物のタイトル2003 IEEE 13th Workshop on Neural Networks for Signal Processing, NNSP 2003
出版社Institute of Electrical and Electronics Engineers Inc.
ページ329-338
ページ数10
ISBN(電子版)0780381777
DOI
出版ステータスPublished - 2003
イベント13th IEEE Workshop on Neural Networks for Signal Processing, NNSP 2003 - Toulouse, France
継続期間: 2003 9 172003 9 19

出版物シリーズ

名前Neural Networks for Signal Processing - Proceedings of the IEEE Workshop
2003-January

Other

Other13th IEEE Workshop on Neural Networks for Signal Processing, NNSP 2003
CountryFrance
CityToulouse
Period03/9/1703/9/19

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Artificial Intelligence
  • Software
  • Computer Networks and Communications
  • Signal Processing

フィンガープリント 「Loopy belief propagation and probabilistic image processing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル