Locally optimal configurations for the two-phase torsion problem in the ball

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We consider the unit ball Ω⊂RN (N≥2) filled with two materials with different conductivities. We perform shape derivatives up to the second order to find out precise information about locally optimal configurations with respect to the torsional rigidity functional. In particular we analyse the role played by the configuration obtained by putting a smaller concentric ball inside Ω. In this case the stress function admits an explicit form which is radially symmetric: this allows us to compute the sign of the second order shape derivative of the torsional rigidity functional with the aid of spherical harmonics. Depending on the ratio of the conductivities a symmetry breaking phenomenon occurs.

本文言語English
ページ(範囲)33-48
ページ数16
ジャーナルNonlinear Analysis, Theory, Methods and Applications
162
DOI
出版ステータスPublished - 2017 10

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「Locally optimal configurations for the two-phase torsion problem in the ball」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル