Local behavior around simple critical points

Kiyohiro Ikeda, Kazuo Murota

研究成果: Chapter

抄録

A general mathematical framework of bifurcation analysis that is to be employed throughout the book is presented. In particular, the Liapunov–Schmidt reduction is introduced as a tool to derive bifurcation equation. Perfect and imperfect bifurcation behaviors at simple critical points are investigated asymptotically in view of the leading terms of the power series expansion of this equation. This chapter lays a theoretical foundation of Chaps. 3 – 6 and is extended to a system with group symmetry in Chaps. 8 and 9.

本文言語English
ホスト出版物のタイトルApplied Mathematical Sciences (Switzerland)
出版社Springer
ページ35-76
ページ数42
DOI
出版ステータスPublished - 2019

出版物シリーズ

名前Applied Mathematical Sciences (Switzerland)
149
ISSN(印刷版)0066-5452
ISSN(電子版)2196-968X

ASJC Scopus subject areas

  • 応用数学

フィンガープリント

「Local behavior around simple critical points」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル