Liquid Metal Composites with Anisotropic and Unconventional Piezoconductivity

Guolin Yun, Shi Yang Tang, Qianbin Zhao, Yuxin Zhang, Hongda Lu, Dan Yuan, Shuaishuai Sun, Lei Deng, Michael D. Dickey, Weihua Li

研究成果: Article査読

36 被引用数 (Scopus)

抄録

Anisotropic elastic composites—that is, elastomers containing aligned fillers—often have enhanced properties in the direction of alignment. Depending on the fillers, these composites can have desirable electrical, thermal, or mechanical properties. Here, a silicone composite filled with both solid magnetic metal microparticles and liquid metal microdroplets has been developed. Aligning the solid particles within a magnetic field during curing imparts anisotropy in several properties. Thus, the composite is called an anisotropic liquid metal-filled magnetorheological elastomer (ALMMRE). Compared with isotropic liquid metal-filled composites, the conductivity of the ALMMRE is significantly enhanced in all directions. The ALMMRE also exhibits anisotropic piezoconductivity and a significantly enhanced electrical anisotropy under mechanical deformation; these properties are not observed in conventional anisotropic composites. The ALMMRE also shows anisotropic mechanical, thermal, and magnetic properties and demonstrates its several proof-of-concept applications. The sensitivity of the ALMMRE's properties to strain may help advance future flexible sensors and soft electronics.

本文言語English
ページ(範囲)824-841
ページ数18
ジャーナルMatter
3
3
DOI
出版ステータスPublished - 2020 9月 2

ASJC Scopus subject areas

  • 材料科学(全般)

フィンガープリント

「Liquid Metal Composites with Anisotropic and Unconventional Piezoconductivity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル