Linear and nonlinear instability of a vortex ring

Yasuhide Fukumoto, Yuji Hattori

研究成果: Chapter

抄録

A new linear instability mechanism of curvature origin is established for a vortex ring. The curvature effect reduces O(2) × SO(2) symmetry of a circularcylindrical tube to O(2), and fuels a pair of Kelvin waves whose azimuthal wavenumbers on the core are separated by one. For Kelvin's vortex ring, the growth rate and eigenfunctions are written out in closed form. In the inviscid case, the curvature effect dominates over the elliptically straining effect, but the former suffers from enhanced viscous damping. There are numerous excitable modes. As a first step toward an understanding of the route to a matured stage, we derive equations for weakly nonlinear evolution of amplitudes of the curvature instability. Our direct numerical simulation successfully captures the elliptical instability.

本文言語English
ホスト出版物のタイトルIUTAM Symposium on Elementary Vortices and Coherent Structures
ホスト出版物のサブタイトルSignificance in Turbulence Dynamicsa
編集者SHIGEO KIDA
ページ283-294
ページ数12
出版ステータスPublished - 2006 12 1
外部発表はい

出版物シリーズ

名前Fluid Mechanics and its Applications
79
ISSN(印刷版)0926-5112

ASJC Scopus subject areas

  • 材料力学
  • 機械工学
  • 流体および伝熱

フィンガープリント

「Linear and nonlinear instability of a vortex ring」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル