Kovalevskaya exponents and the space of initial conditions of a quasi-homogeneous vector field

研究成果: Article査読

6 被引用数 (Scopus)

抄録

Formal series solutions and the Kovalevskaya exponents of a quasi-homogeneous polynomial system of differential equations are studied by means of a weighted projective space and dynamical systems theory. A necessary and sufficient condition for the series solution to be a convergent Laurent series is given, which improves the well-known Painlevé test. In particular, if a given system has the Painlevé property, an algorithm to construct Okamoto's space of initial conditions is given. The space of initial conditions is obtained by weighted blow-ups of the weighted projective space, where the weights for the blow-ups are determined by the Kovalevskaya exponents. The results are applied to the first Painlevé hierarchy (2. m-th order first Painlevé equation).

本文言語English
ページ(範囲)7681-7716
ページ数36
ジャーナルJournal of Differential Equations
259
12
DOI
出版ステータスPublished - 2015 12月 15
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Kovalevskaya exponents and the space of initial conditions of a quasi-homogeneous vector field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル