Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements

Timothy Davis, Adam Edstrand, Farrukh Alvi, Louis Cattafesta, Daisuke Yorita, Keisuke Asai

研究成果: Article査読

25 被引用数 (Scopus)

抄録

At given nozzle to plate spacings, the flow field of high-speed impinging jets is known to be characterized by a resonance phenomenon. Large coherent structures that convect downstream and impinge on the surface create strong acoustic waves that interact with the inherently unstable shear layer at the nozzle exit. This feedback mechanism, driven by the coherent structures in the jet shear layer, can either be axisymmetric or helical in nature. Fast-response pressure-sensitive paint (PSP) is applied to the impingement surface to map the unsteady pressure distribution associated with these resonant modes. Phase-averaged results acquired at several kHz are obtained using a flush mounted unsteady pressure transducer on the impingement plate as a reference signal. Tests are conducted on a Mach 1.5 jet at nozzle to plate spacings of $$h/D_{j} = 4\, \text{ and}\, 4.5$$h/Dj=4and4.5. The resulting phase-averaged distribution reveals dramatically different flow fields at the corresponding impingement heights. The existence of a purely axisymmetric mode with a frequency of 6.3 kHz is identified at $$h/D_{j} = 4.5$$h/Dj=4.5 and is characterized by concentric rings of higher/lower pressure that propagate radially with increasing phase. Two simultaneous modes are observed at $$h/D_{j} = 4$$h/Dj=4 with one being a dominant symmetric mode at 7.1 kHz and the second a sub-dominant helical mode at 4.3 kHz. Complimentary phase-conditioned Schlieren images are also obtained visualizing the flow structures associated with each mode and are consistent with the PSP results.

本文言語English
ページ(範囲)1-13
ページ数13
ジャーナルExperiments in Fluids
56
5
DOI
出版ステータスPublished - 2015 5月 1

ASJC Scopus subject areas

  • 計算力学
  • 材料力学
  • 物理学および天文学(全般)
  • 流体および伝熱

フィンガープリント

「Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル