Internal flow and wall interaction in a partly blocked flexible channel (1st report, modeling, numerical algorithm and general characteristics of the flow)

Tameo Nakanishi, Masami Nakano, Yohei Endo

研究成果: Article査読

抄録

When a constriction is formed inside a blood vessel, a self-excited oscillation of the blood flow and the vessel surface may occur. Numerical investigation has been conducted for incompressible viscous flows through a 2 D channel with a flexible upper wall and a rigid lower wall. The flexible wall possesses mass, surface tension and a dumping factor. An obstacle modeled after the constriction was placed close to the inlet on the lower wall. The interactions of the internal flow and the deformation of the upper wall were elucidated for Reynolds numbers ranging from 800 to 5 000. Steady solutions were obtained for Reynolds number below 1 000 and unsteady solutions above this value. It was found that at the Reynolds number above 2 500, a squeezing motion of the upper wall periodically occurs just behind the obstacle and propagates downstream. The flow rate at the outlet periodically varies due to the unsteady motion of the upper wall. The dimensionless period and the amplitude of the flow rate oscillation increase with increasing Reynolds number.

本文言語English
ページ(範囲)2678-2686
ページ数9
ジャーナルNihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B
67
663
DOI
出版ステータスPublished - 2001 11月
外部発表はい

ASJC Scopus subject areas

  • 凝縮系物理学
  • 機械工学

フィンガープリント

「Internal flow and wall interaction in a partly blocked flexible channel (1st report, modeling, numerical algorithm and general characteristics of the flow)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル