Idempotent Turing Machines

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

A function f is said to be idempotent if f(f(x)) = f(x) holds whenever f(x) is defined. This paper presents a computation model for idempotent functions, called an idempotent Turing machine. The computation model is necessarily and sufficiently expressive in the sense that not only does it always compute an idempotent function but also every idempotent computable function can be computed by an idempotent Turing machine. Furthermore, a few typical properties of the computation model such as robustness and universality are shown. Our computation model is expected to be a basis of special-purpose (or domain-specific) programming languages in which only but all idempotent computable functions can be defined.

本文言語English
ホスト出版物のタイトル46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021
編集者Filippo Bonchi, Simon J. Puglisi
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959772013
DOI
出版ステータスPublished - 2021 8 1
イベント46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021 - Tallinn, Estonia
継続期間: 2021 8 232021 8 27

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
202
ISSN(印刷版)1868-8969

Conference

Conference46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021
国/地域Estonia
CityTallinn
Period21/8/2321/8/27

ASJC Scopus subject areas

  • ソフトウェア

フィンガープリント

「Idempotent Turing Machines」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル