Hydrodynamic Limit for Weakly Asymmetric Simple Exclusion Processes in Crystal Lattices

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We investigate the hydrodynamic limit for weakly asymmetric simple exclusion processes in crystal lattices. We construct a suitable scaling limit by using a discrete harmonic map. As we shall observe, the quasi-linear parabolic equation in the limit is defined on a flat torus and depends on both the local structure of the crystal lattice and the discrete harmonic map. We formulate the local ergodic theorem on the crystal lattice by introducing the notion of local function bundle, which is a family of local functions on the configuration space. The ideas and methods are taken from the discrete geometric analysis to these problems. Results we obtain are extensions of ones by Kipnis, Olla and Varadhan to crystal lattices.

本文言語English
ページ(範囲)603-641
ページ数39
ジャーナルCommunications in Mathematical Physics
315
3
DOI
出版ステータスPublished - 2012 11

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Hydrodynamic Limit for Weakly Asymmetric Simple Exclusion Processes in Crystal Lattices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル