How to cut pseudo-parabolas into segments

Hisao Tamaki, Takeshi Tokuyama

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

Let Γ be a collection of unbounded x-monotone Jordan arcs intersecting at most twice each other, which we call pseudo-parabolas, since two axis parallel parabolas intersects at most twice. We investigate how to cut pseudo-parabolas into the minimum number of curve segments so that each pair of segments intersect at most once. We give an Ω(n4/3) lower bound and O(n5/3) upper bound. We give the same bounds for an arrangement of circles. Applying the upper bound, we give an O(n23/12) bound on the complexity of a level of pseudo-parabolas, and O(n11/6) bound on the complexity of a combinatorially concave chain of pseudo parabolas. We also give some upperbounds on the number of transitions of the minimum weight matroid base when the weight of each element changes as a quadratic function of a single parameter.

本文言語English
ホスト出版物のタイトルProceedings of the 11th Annual Symposium on Computational Geometry, SCG 1995
出版社Association for Computing Machinery
ページ230-237
ページ数8
ISBN(電子版)0897917243
DOI
出版ステータスPublished - 1995 9 1
イベント11th Annual Symposium on Computational Geometry, SCG 1995 - Vancouver, Canada
継続期間: 1995 6 51995 6 7

出版物シリーズ

名前Proceedings of the Annual Symposium on Computational Geometry
Part F129372

Other

Other11th Annual Symposium on Computational Geometry, SCG 1995
国/地域Canada
CityVancouver
Period95/6/595/6/7

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 幾何学とトポロジー
  • 計算数学

フィンガープリント

「How to cut pseudo-parabolas into segments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル