Hot spots for the heat equation with a rapidly decaying negative potential

Kazuhiro Ishige, Y. Kabeya

研究成果: Article

6 引用 (Scopus)

抜粋

We consider the Cauchy problem of the heat equation with a radially symmetric, negative potential -V which behaves like V (r) = O(r-k) as r → ∞, for some k > 2, and study the relation between the large-time behavior of hot spots of the solutions and the behavior of the potential at the space infinity. In particular, we prove that the hot spots tend to the space infinity as t → ∞ and how their rates depend on whether V ({norm of matrix} ̇ {norm of matrix}) ε L1(RN) or not.

元の言語English
ページ(範囲)643-662
ページ数20
ジャーナルAdvances in Differential Equations
14
発行部数7-8
出版物ステータスPublished - 2009 12 1

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント Hot spots for the heat equation with a rapidly decaying negative potential' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用