### 抜粋

We consider the Cauchy problem of the heat equation with a radially symmetric, negative potential -V which behaves like V (r) = O(r^{-k}) as r → ∞, for some k > 2, and study the relation between the large-time behavior of hot spots of the solutions and the behavior of the potential at the space infinity. In particular, we prove that the hot spots tend to the space infinity as t → ∞ and how their rates depend on whether V ({norm of matrix} ̇ {norm of matrix}) ε L^{1}(R^{N}) or not.

元の言語 | English |
---|---|

ページ（範囲） | 643-662 |

ページ数 | 20 |

ジャーナル | Advances in Differential Equations |

巻 | 14 |

発行部数 | 7-8 |

出版物ステータス | Published - 2009 12 1 |

### ASJC Scopus subject areas

- Analysis
- Applied Mathematics

## フィンガープリント Hot spots for the heat equation with a rapidly decaying negative potential' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Ishige, K., & Kabeya, Y. (2009). Hot spots for the heat equation with a rapidly decaying negative potential.

*Advances in Differential Equations*,*14*(7-8), 643-662.