TY - JOUR

T1 - Holographic entanglement entropy in Suzuki-Trotter decomposition of spin systems

AU - Matsueda, Hiroaki

N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.

PY - 2012/3/1

Y1 - 2012/3/1

N2 - In quantum spin chains at criticality, two types of scaling for the entanglement entropy exist: one comes from conformal field theory (CFT), and the other is for entanglement support of matrix product state (MPS) approximation. On the other hand, the quantum spin-chain models can be mapped onto two-dimensional (2D) classical ones by the Suzuki-Trotter decomposition. Motivated by the scaling and the mapping, we introduce information entropy for 2D classical spin configurations as well as a spectrum, and examine their basic properties in the Ising and the three-state Potts models on the square lattice. They are defined by the singular values of the reduced density matrix for a Monte Carlo snapshot. We find scaling relations of the entropy compatible with the CFT and the MPS results. Thus, we propose that the entropy is a kind of "holographic" entanglement entropy. At T c, the spin configuration is fractal, and various sizes of ordered clusters coexist. Then, the singular values automatically decompose the original snapshot into a set of images with different length scales, respectively. This is the origin of the scaling. In contrast to the MPS scaling, long-range spin correlation can be described by only few singular values. Furthermore, the spectrum, which is a set of logarithms of the singular values, also seems to be a holographic entanglement spectrum. We find multiple gaps in the spectrum, and in contrast to the topological phases, the low-lying levels below the gap represent spontaneous symmetry breaking. These contrasts are strong evidence of the dual nature of the holography. Based on these observations, we discuss the amount of information contained in one snapshot.

AB - In quantum spin chains at criticality, two types of scaling for the entanglement entropy exist: one comes from conformal field theory (CFT), and the other is for entanglement support of matrix product state (MPS) approximation. On the other hand, the quantum spin-chain models can be mapped onto two-dimensional (2D) classical ones by the Suzuki-Trotter decomposition. Motivated by the scaling and the mapping, we introduce information entropy for 2D classical spin configurations as well as a spectrum, and examine their basic properties in the Ising and the three-state Potts models on the square lattice. They are defined by the singular values of the reduced density matrix for a Monte Carlo snapshot. We find scaling relations of the entropy compatible with the CFT and the MPS results. Thus, we propose that the entropy is a kind of "holographic" entanglement entropy. At T c, the spin configuration is fractal, and various sizes of ordered clusters coexist. Then, the singular values automatically decompose the original snapshot into a set of images with different length scales, respectively. This is the origin of the scaling. In contrast to the MPS scaling, long-range spin correlation can be described by only few singular values. Furthermore, the spectrum, which is a set of logarithms of the singular values, also seems to be a holographic entanglement spectrum. We find multiple gaps in the spectrum, and in contrast to the topological phases, the low-lying levels below the gap represent spontaneous symmetry breaking. These contrasts are strong evidence of the dual nature of the holography. Based on these observations, we discuss the amount of information contained in one snapshot.

UR - http://www.scopus.com/inward/record.url?scp=84858140000&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84858140000&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.85.031101

DO - 10.1103/PhysRevE.85.031101

M3 - Article

AN - SCOPUS:84858140000

VL - 85

JO - Physical Review E

JF - Physical Review E

SN - 2470-0045

IS - 3

M1 - 031101

ER -