Higher-order matching in the linear lambda calculus in the absence of constants is NP-complete

研究成果: Conference article査読

15 被引用数 (Scopus)

抄録

A lambda term is linear if every bound variable occurs exactly once. The same constant may occur more than once in a linear term. It is known that higher-order matching in the linear lambda calculus is NP-complete (de Groote 2000), even if each unknown occurs exactly once (Salvati and de Groote 2003). Salvati and de Groote (2003) also claim that the interpolation problem, a more restricted kind of matching problem which has just one occurrence of just one unknown, is NP-complete in the linear lambda calculus. In this paper, we correct a flaw in Salvati and de Groote's (2003) proof of this claim, and prove that NP-hardness still holds if we exclude constants from problem instances. Thus, multiple occurrences of constants do not play an essential role for NP-hardness of higher-order matching in the linear lambda calculus.

本文言語English
ページ(範囲)235-249
ページ数15
ジャーナルLecture Notes in Computer Science
3467
出版ステータスPublished - 2005 9 26
外部発表はい
イベント16th International Conference on Term Rewriting and Applications, RTA 2005 - Nara, Japan
継続期間: 2005 4 192005 4 21

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Higher-order matching in the linear lambda calculus in the absence of constants is NP-complete」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル