High-resolution angle-resolved photoemission study of USb: Dual character of electrons

H. Kumigashira, T. Ito, A. Ashihara, Hyeong Do Kim, H. Aoki, T. Suzuki, H. Yamagami, T. Takahashi, A. Ochiai

研究成果: Article査読

25 被引用数 (Scopus)


We have performed a high-resolution angle-resolved photoemission spectroscopy (ARPES) on antiferromagnetic USb to study the electronic structure near the Fermi level. We found that USb has a metallic band structure with the fully occupied Sb (Formula presented) bands in contrast to semimetallic CeSb that has the partially filled Sb (Formula presented) bands. This suggests that the magnetic phase transition of USb is not understood within the framework of the p-f mixing model. This difference in the electronic structure between USb and CeSb is ascribed to the energy position of the respective bare f level with respect to the Sb (Formula presented) band. The observed fully occupied Sb (Formula presented) bands in USb is consistent with the band calculation based on the itinerant U (Formula presented) model, but different from that of the localized model. On the other hand, we found two dispersionless bands just below (Formula presented) in ARPES spectra of USb, which are well described in terms of the (Formula presented)-final-state multiplet structure calculated based on the localized (Formula presented) model. These experimental results suggest the dual (itinerant and localized) character of (Formula presented) electrons that characterizes anomalous properties of USb.

ジャーナルPhysical Review B - Condensed Matter and Materials Physics
出版ステータスPublished - 2000

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学


「High-resolution angle-resolved photoemission study of USb: Dual character of electrons」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。