High intensity focused ultrasound lithotripsy with cavitating microbubbles

Shin Yoshizawa, Teiichiro Ikeda, Akira Ito, Ryuhei Ota, Shu Takagi, Yoichiro Matsumoto

研究成果: Article査読

62 被引用数 (Scopus)

抄録

In the medical ultrasound field, microbubbles have recently been the subject of much interest. Controlling actively the effect of the microbubbles, a novel therapeutic method has been investigated. In this paper, our works on high intensity focused ultrasound (HIFU) lithotripsy with cavitating microbubbles are reviewed and the cavitation detection method to optimize the HIFU intensity is investigated. In the HIFU lithotripsy, collapse of the cloud cavitation is used to fragment kidney stones. Cloud cavitation is potentially the most destructive form of cavitation. When the cloud cavitation is acoustically forced into a collapse, it has the potential to concentrate a very high pressure. For the control of the cloud cavitation collapse, a novel two-frequency wave (cavitation control [C-C] waveform) is designed; a high-frequency ultrasound pulse (1-4 MHz) to create the cloud cavitation and a low-frequency trailing pulse (500 kHz) following the high-frequency pulse to force the cloud into collapse. High-speed photography showed the cavitation collapse on the stone and the shock-wave emission from the cloud. In vitro erosion tests of model and natural stones were also conducted. In the case of model stones, the erosion rate of the C-C waveform showed a distinct advantage with the combined high- and low-frequency waves over either wave alone. For the optimization of the high-frequency ultrasound intensity, the subharmonic acoustic pressure was examined. The results showed relationship between the subharmonic pressure from cavitating bubbles induced by the high-frequency ultrasound and eroded volume of the model stones. Natural stones were eroded and most of the resulting fragments were less than 1 mm in diameter. The method has the potential to provide a novel lithotripsy system with small fragments and localized cavitating bubbles on a stone.

本文言語English
ページ(範囲)851-860
ページ数10
ジャーナルMedical and Biological Engineering and Computing
47
8
DOI
出版ステータスPublished - 2009

ASJC Scopus subject areas

  • Biomedical Engineering
  • Computer Science Applications

フィンガープリント 「High intensity focused ultrasound lithotripsy with cavitating microbubbles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル