High density 3D LSI technology using W/Cu hybrid TSVs

M. Murugesan, H. Kino, A. Hashiguchi, C. Miyazaki, H. Shimamoto, H. Kobayashi, T. Fukushima, T. Tanaka, M. Koyanagi

研究成果: Conference contribution

25 被引用数 (Scopus)

抄録

High density 3D LSI technology using W/Cu hybrid through silicon vias (TSVs) has been proposed. Major reliability issues attributed to W/Cu hybrid TSVs in high density 3D LSIs such as (i) thermo-mechanical stress exerted by W TSVs used for signal lines and Cu TSVs used for power/ground lines in active Si, (ii) external gettering (EG) role played by sub-surface defects in thinned Si substrate, and (iii) effect of local stress induced by μ-bumps on device characteristics are discussed. By annealing at the temperature of ≥300°C, both Cu (via size ≤10μm) and W (via size ≤1μm) square TSVs induce only compressive stress at small TSV spacing which will seriously affect the mobility in active Si area, and thus device characteristics. Large compressive stress not only leads to extrusion and peeling of TSV metal, but also die cracking, and it will adversely impact on the reliability of 3D-LSIs. Then it was proposed to increase the TSV pitch to larger than twice of TSV size to avoid these adverse effects in high density 3D-LSI. Sub-surface defects at dry polished (DP) surface well act as potential EG sites for Cu contamination. Influences of mechanical stress induced by μ-bumps on device characteristics were also evaluated and ultra-small size In-Au μ-bump technology has been developed to minimize the influences of μ-bumps on device characteristics.

本文言語English
ホスト出版物のタイトル2011 International Electron Devices Meeting, IEDM 2011
ページ6.6.1-6.6.4
DOI
出版ステータスPublished - 2011
イベント2011 IEEE International Electron Devices Meeting, IEDM 2011 - Washington, DC, United States
継続期間: 2011 12 52011 12 7

出版物シリーズ

名前Technical Digest - International Electron Devices Meeting, IEDM
ISSN(印刷版)0163-1918

Other

Other2011 IEEE International Electron Devices Meeting, IEDM 2011
国/地域United States
CityWashington, DC
Period11/12/511/12/7

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 電子工学および電気工学
  • 材料化学

フィンガープリント

「High density 3D LSI technology using W/Cu hybrid TSVs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル