TY - JOUR
T1 - Heterogeneous GAD65 Expression in Subtypes of GABAergic Neurons Across Layers of the Cerebral Cortex and Hippocampus
AU - Kajita, Yuki
AU - Mushiake, Hajime
N1 - Funding Information:
This work was supported by a JSPS KAKENHI grant (Numbers 20K16614 and 19H03337) and MEXT KAKENHI grant (Number JP16H06276: Platform of Advanced Animal Model Support).
Publisher Copyright:
© Copyright © 2021 Kajita and Mushiake.
PY - 2021/11/3
Y1 - 2021/11/3
N2 - Gamma-aminobutyric acid (GABA), a major inhibitory transmitter in the central nervous system, is synthesized via either of two enzyme isoforms, GAD65 or GAD67. GAD65 is synthesized in the soma but functions at synaptic terminals in an activity-dependent manner, playing a distinct role in excitatory-inhibitory balance. However, the extent to which each GABAergic subtype expresses GAD65 in the resting state remains unclear. In this study, we compared GAD65 expression among six GABAergic subtypes: NPY+, nNOS+, PV+, SOM+, CR+, and CCK+. According to the results, the GABAergic subtypes were classified into two groups per region based on GAD65 expression levels: high-expression (NPY+ and nNOS+) and low-expression groups (PV+, SOM+, CR+, and CCK+) in the cerebral cortex and high-expression (NPY+, nNOS+, and CCK+) and low-expression groups (PV+, SOM+, and CR+) in the hippocampus. Moreover, these expression patterns revealed a distinct laminar distribution in the cerebral cortex and hippocampus. To investigate the extent of GAD65 transport from the soma to synaptic terminals, we examined GAD65 expression in colchicine-treated rats in which GAD65 was synthesized in the soma but not transported to terminals. We found a significant positive correlation in GAD65 expression across subtypes between colchicine-treated and control rats. In summary, each GABAergic subtype exhibits a distinct GAD65 expression pattern across layers of the cerebral cortex and hippocampus. In addition, the level of GAD65 expression in the soma can be used as a proxy for the amount of GAD65 in the cytoplasm. These findings suggest that exploration of the distinct profiles of GAD65 expression among GABAergic subtypes could clarify the roles that GABAergic subtypes play in maintaining the excitatory-inhibitory balance.
AB - Gamma-aminobutyric acid (GABA), a major inhibitory transmitter in the central nervous system, is synthesized via either of two enzyme isoforms, GAD65 or GAD67. GAD65 is synthesized in the soma but functions at synaptic terminals in an activity-dependent manner, playing a distinct role in excitatory-inhibitory balance. However, the extent to which each GABAergic subtype expresses GAD65 in the resting state remains unclear. In this study, we compared GAD65 expression among six GABAergic subtypes: NPY+, nNOS+, PV+, SOM+, CR+, and CCK+. According to the results, the GABAergic subtypes were classified into two groups per region based on GAD65 expression levels: high-expression (NPY+ and nNOS+) and low-expression groups (PV+, SOM+, CR+, and CCK+) in the cerebral cortex and high-expression (NPY+, nNOS+, and CCK+) and low-expression groups (PV+, SOM+, and CR+) in the hippocampus. Moreover, these expression patterns revealed a distinct laminar distribution in the cerebral cortex and hippocampus. To investigate the extent of GAD65 transport from the soma to synaptic terminals, we examined GAD65 expression in colchicine-treated rats in which GAD65 was synthesized in the soma but not transported to terminals. We found a significant positive correlation in GAD65 expression across subtypes between colchicine-treated and control rats. In summary, each GABAergic subtype exhibits a distinct GAD65 expression pattern across layers of the cerebral cortex and hippocampus. In addition, the level of GAD65 expression in the soma can be used as a proxy for the amount of GAD65 in the cytoplasm. These findings suggest that exploration of the distinct profiles of GAD65 expression among GABAergic subtypes could clarify the roles that GABAergic subtypes play in maintaining the excitatory-inhibitory balance.
KW - GABAergic subtype
KW - GAD65
KW - cerebral cortex
KW - hippocampus
KW - rat
UR - http://www.scopus.com/inward/record.url?scp=85119349512&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119349512&partnerID=8YFLogxK
U2 - 10.3389/fnbeh.2021.750869
DO - 10.3389/fnbeh.2021.750869
M3 - Article
AN - SCOPUS:85119349512
SN - 1662-5153
VL - 15
JO - Frontiers in Behavioral Neuroscience
JF - Frontiers in Behavioral Neuroscience
M1 - 750869
ER -