Helly numbers of polyominoes

Jean Cardinal, Hiro Ito, Matias Korman, Stefan Langerman

研究成果: Paper査読

抄録

We define the Helly number of a polyomino P as the smallest number h such that the h-Helly property holds for the family of symmetric and translated copies of P on the integer grid. We prove the following: (i) the only polyominoes with Helly number 2 are the rectangles, (ii) there does not exist any polyomino with Helly number 3, (iii) there exist polyminoes of Helly number k for any k ≠ 1, 3.

本文言語English
出版ステータスPublished - 2011 12 1
外部発表はい
イベント23rd Annual Canadian Conference on Computational Geometry, CCCG 2011 - Toronto, ON, Canada
継続期間: 2011 8 102011 8 12

Other

Other23rd Annual Canadian Conference on Computational Geometry, CCCG 2011
CountryCanada
CityToronto, ON
Period11/8/1011/8/12

ASJC Scopus subject areas

  • Computational Mathematics
  • Geometry and Topology

フィンガープリント 「Helly numbers of polyominoes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル