Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato's type lemma

Ning An Lai, Nico Michele Schiavone, Hiroyuki Takamura

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In this work we consider several semilinear damped wave equations with “subcritical” nonlinearities, focusing on studying lifespan estimates for energy solutions. Our main concern is on equations with scale-invariant damping and mass. By imposing different assumptions on the initial data, we prove lifespan estimates from above, distinguishing between “wave-like” and “heat-like” behaviours. Furthermore, we conjecture logarithmic improvements for the estimates on the “transition surfaces” separating the two behaviours. As a direct consequence, we reorganize the blow-up results and lifespan estimates for the massless case, and we obtain in particular improved lifespan estimates for the one dimensional case, compared to the known results. We also study semilinear wave equations with scattering damping and negative mass term, finding that if the decay rate of the mass term equals to 2, the lifespan estimate coincides with the one in a special case of scale-invariant damped equation. The main tool employed in the proof is a Kato's type lemma, established by iteration argument.

本文言語English
ページ(範囲)11575-11620
ページ数46
ジャーナルJournal of Differential Equations
269
12
DOI
出版ステータスPublished - 2020 12 5

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato's type lemma」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル