Hand Segmentation for Contactless Palmprint Recognition

Yusei Suzuki, Hiroya Kawai, Koichi Ito, Takafumi Aoki, Masakazu Fujio, Yosuke Kaga, Kenta Takahashi

研究成果: Conference contribution

抄録

Extracting a palm region with fixed location from an input hand image is a crucial task for palmprint recognition to realize reliable person authentication under unconstrained conditions. A palm region can be extracted from the fixed position using the gaps between fingers. Hence, an accurate and robust hand segmentation method is indispensable to extract a palm region from an image with complex background taken under various environments. This paper proposes a hand segmentation method for contactless palmprint recognition. The proposed method employs a new CNN architecture consisting of an encoder-decoder model of CNN with a pyramid pooling module. Through a set of experiments using a hand image dataset, we demonstrate that the proposed method exhibits efficient performance on hand segmentation.

本文言語English
ホスト出版物のタイトルPattern Recognition - 5th Asian Conference, ACPR 2019, Revised Selected Papers
編集者Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
出版社Springer
ページ902-912
ページ数11
ISBN(印刷版)9783030414030
DOI
出版ステータスPublished - 2020
イベント5th Asian Conference on Pattern Recognition, ACPR 2019 - Auckland, New Zealand
継続期間: 2019 11 262019 11 29

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12046 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference5th Asian Conference on Pattern Recognition, ACPR 2019
国/地域New Zealand
CityAuckland
Period19/11/2619/11/29

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Hand Segmentation for Contactless Palmprint Recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル