Hall plateau diagram for the Hofstadter butterfly energy spectrum

Mikito Koshino, Tsuneya Ando

研究成果: Article査読

11 被引用数 (Scopus)

抄録

We extensively study the localization and the quantum Hall effect in the Hofstadter butterfly, which emerges in a two-dimensional electron system with a weak two-dimensional periodic potential. We numerically calculate the Hall conductivity and the localization length for finite systems with the disorder in general magnetic fields, and estimate the energies of the extended levels in an infinite system. We obtain the Hall plateau diagram on the whole region of the Hofstadter butterfly, and propose a theory for the evolution of the plateau structure with increasing disorder. There we show that a subband with the Hall conductivity n e2/h has n separated bunches of extended levels, at least for an integer n≤2. We also find that the clusters of the subbands with identical Hall conductivity, which repeatedly appear in the Hofstadter butterfly, have a similar localization property.

本文言語English
論文番号155304
ジャーナルPhysical Review B - Condensed Matter and Materials Physics
73
15
DOI
出版ステータスPublished - 2006 4 5

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「Hall plateau diagram for the Hofstadter butterfly energy spectrum」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル