Graph manifolds as ends of negatively curved riemannian manifolds

Koji Fujiwara, Takashi Shioya

研究成果: Article査読

抄録

Let M be a graph manifold such that each piece of its JSJ decomposition has the H2 ☓R geometry. Assume that the pieces are glued by isometries. Then there exists a complete Riemannian metric on R ☓ M which is an “eventually warped cusp metric” with the sectional curvature K satisfying 1 < K < 0. A theorem by Ontaneda then implies that M appears as an end of a 4–dimensional, complete, noncompact Riemannian manifold of finite volume with sectional curvature K satisfying 1 < K < 0.

本文言語English
ページ(範囲)2035-2074
ページ数40
ジャーナルGeometry and Topology
24
4
DOI
出版ステータスPublished - 2020

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Graph manifolds as ends of negatively curved riemannian manifolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル