Global well-posedness for the incompressible Navier–Stokes equations in the critical Besov space under the Lagrangian coordinates

Takayoshi Ogawa, Senjo Shimizu

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We consider global well-posedness of the Cauchy problem of the incompressible Navier–Stokes equations under the Lagrangian coordinates in scaling critical Besov spaces. We prove the system is globally well-posed in the homogeneous Besov space B˙p,1−1+n/p(Rn) with 1≤p<∞. The former result was restricted for 1≤p<2n and the main reason why the well-posedness space is enlarged is that the quasi-linear part of the system has a special feature called a multiple divergence structure and the bilinear estimate for the nonlinear terms are improved by such a structure. Our result indicates that the Navier–Stokes equations can be transferred from the Eulerian coordinates to the Lagrangian coordinates even for the solution in the limiting critical Besov spaces.

本文言語English
ページ(範囲)613-651
ページ数39
ジャーナルJournal of Differential Equations
274
DOI
出版ステータスPublished - 2021 2 15

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Global well-posedness for the incompressible Navier–Stokes equations in the critical Besov space under the Lagrangian coordinates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル