Global solutions for the Navier-Stokes equations in the rotational framework

Tsukasa Iwabuchi, Ryo Takada

研究成果: Article査読

28 被引用数 (Scopus)

抄録

The existence of global unique solutions to the Navier-Stokes equations with the Coriolis force is established in the homogeneous Sobolev spaces Hs (ℝ3)3 for 1/2 < s < 3/4 if the speed of rotation is sufficiently large. This phenomenon is so-called the global regularity. The relationship between the size of initial datum and the speed of rotation is also derived. The proof is based on the space time estimates of the Strichartz type for the semigroup associated with the linearized equations. In the scaling critical space H1/2(ℝ3)3, the global regularity is also shown.

本文言語English
ページ(範囲)727-741
ページ数15
ジャーナルMathematische Annalen
357
2
DOI
出版ステータスPublished - 2013 10
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Global solutions for the Navier-Stokes equations in the rotational framework」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル